Gait Improvement in Children with Cerebral Palsy after Myofascial Structural Integration Therapy

CA Buysse MD¹, EC Loi BA¹, KS Price, BA CAR², TM Jaramillo PT DPT MS³, AB Hansen MD⁴, EL Pico MD⁵, HM Feldman, MD, PhD¹

¹Stanford University School of Medicine, ²Advanced Rolfing, ³University of California, San Francisco, ⁴Providence Milwaukie Health and Services, ⁵Santa Clara Medical Center. The authors have no financial relationships or conflicts of interest to disclose.

Introduction

- Cerebral Palsy (CP): Most prevalent physical disability of childhood
 - Prevalence: 3/1000 children in the US
 - Structural changes in distal myofascial unit important in maintaining stiffness associated with spastic CP
- Myofascial Structural Integration (MSI): Deep muscle manual therapy strives to reposition muscles, bones, and joints
- **Dynamic equinus**: Foot deformity in children with CP, results in toewalking and plantarflexion of the foot and ankle

Objective

To assess whether MSI, when used as a complementary treatment, improves aspects of gait in children with CP

- Ten weekly sessions of MSI
- Single certified practitioner
- Playful and non-painful approach; children allowed to be on bed, parent's lap, or floor
- All pre-existing therapies and treatments remained unchanged

Outcomes Measures

Temporal and spatial measures selected:

- Foot Length
- Foot Width \bullet
- Step Length
- Double Support Time
- Velocity

Treatment

Heel-to-Heel Base of Support

Case Series Participants (n=9)

- Mean Age: 2 years, 8 months (SD=10.4 months)
- All ambulatory children with spastic CP
 - Hemiplegia=7, Diplegia=2
- Gross Motor Classification System
 - Level I=7, Level 2=2

Results

- Paired sample t-tests compared pretreatment to post-treatment.
- Differences between enrollment and pretreatment, post-treatment and maintenance not significant for foot length or heel-to-heel.

Measurement on More Affected Side	Normative Data (SD)	Pre- Treatment Mean (SD	Post- Treatment Mean (SD)	t	р
Foot Length (cm)	16.0 (2.52)	12.5 (2.19)	13.0 (2.54)	-3.04	.02*
Foot Width (cm)	7.0 (2.11)	5.8 (1.25)	6.2 (1.39)	-1.28	.24
Step Length (cm)	34.3 (7.35)	32.5 (5.11)	32.2 (3.89)	.16	.88
Heel-to-Heel Base of Support (cm)	8.3 (3.25)	11.5 (1.90)	10.2 (3.10)	2.25	.06
Double Support Time (% of Cycle)	16.5 (5.0)	22.3 (4.25)	21.8 (7.16)	.22	.83
Velocity (cm/sec)	101.1 (29.9)	82.6 (11.58)	84.0 (15.69)	28	.78

Conclusion

- MSI treatment was associated with increased foot length
- Foot length interpreted as reduction in dyamic equinus, improved heel strike and reduction in toe walking particularly in children with hemiplegic CP.
- MSI was associated with a trend toward reduction in heel-to-heel base of support.

Acknowledgements

We thank the children and families who participated in this study. We thank Jessica Rose, PhD for use of the GAITRite® electronic mat. This work was supported by Gerber Foundation Grant 11PH-010-1210-2936 and MCHB Training Grant T77MC09796.